Distributed Simulated Annealing with MapReduce
نویسنده
چکیده
Simulated annealing’s high computational intensity has stimulated researchers to experiment with various parallel and distributed simulated annealing algorithms for shared memory, message-passing, and hybrid-parallel platforms. MapReduce is an emerging distributed computing framework for large-scale data processing on clusters of commodity servers; to our knowledge, MapReduce has not been used for simulated annealing yet. In this paper, we investigate the applicability of MapReduce to distributed simulated annealing in general, and to the TSP in particular. We (i) design six algorithmic patterns of distributed simulated annealing with MapReduce, (ii) instantiate the patterns into MR implementations to solve a sample TSP problem, and (iii) evaluate the solution quality and the speedup of the implementations on a cloud computing platform, Amazon’s Elastic MapReduce. Some of our patterns integrate simulated annealing with genetic algorithms. The paper can be beneficial for those interested in the potential of MapReduce in computationally intensive nature-inspired methods in general and simulated annealing in particular.
منابع مشابه
Measures of Fault Tolerance in Distributed Simulated Annealing
In this paper, we examine the different measures of Fault Tolerance in a Distributed Simulated Annealing process. Optimization by Simulated Annealing on a distributed system is prone to various sources of failure. We analyse simulated annealing algorithm, its architecture in distributed platform and potential sources of failures. We examine the behaviour of tolerant distributed system for optim...
متن کاملApplication of Simulated Annealing to Data Distribution for All-to-All Comparison Problems in Homogeneous Systems
Distributed systems are widely used for solving large-scale and data-intensive computing problems, including all-to-all comparison (ATAC) problems. However, when used for ATAC problems, existing computational frameworks such as Hadoop focus on load balancing for allocating comparison tasks, without careful consideration of data distribution and storage usage. While Hadoop-based solutions provid...
متن کاملAdaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments
Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...
متن کاملParallel Simulated Annealing using Genetic Crossover
This paper proposes a new algorithm of a simulated annealing (SA): Parallel Simulated Annealing using Genetic Crossover (PSA/GAc). The proposed algorithm consists of several processes, and in each process SA is operated. The genetic crossover is used to exchange information between solutions at fixed intervals. While SA requires high computational costs, particularly in continuous problems, thi...
متن کاملSatis ability Test with Synchronous Simulated Annealing on the Fujitsu AP
Solving the hard Satissability Problem is time consuming even for modest-sized problem instances. Solving the Random L-SAT Problem is especially diicult due to the ratio of clauses to variables. This report presents a parallel synchronous simulated annealing method for solving the Random L-SAT Problem on a large-scale distributed-memory multiprocessor. In particular, we use a parallel synchrono...
متن کامل